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1. Introduction

In this paper, we introduce a new version of the Fast Multipole Method
(FMM) for the evaluation of potential fields in three dimensions. The scheme
evaluates all pairwise interactions in large ensembles of particles, i.e. expres-
sions of the form

i=i \\xj ~ xi\\

for the gravitational or electrostatic potential, and

for the field, where xi,X2,...,xn are points in K3, and qi,q2, • • • ,qn are a
set of (real) coefficients. Here || • || denotes the Euclidean norm.

The evaluation of expressions of the form (1.1) is closely related to a
number of important problems in applied mathematics, physics, chemistry
and biology. Molecular dynamics and Hartree-Fock calculations in chem-
istry, the evolution of large-scale gravitational systems in astrophysics, ca-
pacitance extraction in electrical engineering, and vortex methods in fluid
dynamics are all examples of areas where simulations require rapid and ac-
curate evaluation of sums of the form (1.1) and (1.2). When certain closely
related interactions are considered as well, involving expressions of the form

ik\\xj-xi\\

the list of applications becomes even more extensive.
This paper is a continuation (after an interval of several years) of a se-

quence of joint papers by the authors, starting with Greengard and Rokh-
lin (1987) and Carrier, Greengard and Rokhlin (1988) which introduced
the Fast Multipole Method in two dimensions. Subsequent work extended
the method to three dimensions (Greengard 1988, Greengard and Rokhlin
1988a, 19886), and there followed a number of versions of the scheme, both
by the present authors and by other researchers; see, for example, Anderson
(1992), Nabors, Korsmeyer, Leighton and White (1994), Berman (1995),
Epton and Dembart (1995), Elliott and Board (1996). After about ten
years of research, however, a somewhat unsatisfactory picture has emerged.
In short, there now exist extremely efficient algorithms for the evaluation of
the two-dimensional analogues of (1.1), (1.2) with (practically) arbitrarily
high precision, as well as very efficient and accurate algorithms for a host of
related problems (Rokhlin 1988, Alpert and Rokhlin 1991, Beylkin, Coifman
and Rokhlin 1991, Coifman and Meyer 1991, Greengard and Strain 1991,
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Strain 1991, Alpert, Beylkin, Coifman and Rokhlin 1993). However, for the
sums (1.1) and (1.2), there are few practical schemes, and these provide only
limited accuracy. Since most real-world problems are three-dimensional, it
can be said that analysis-based 'fast' methods are a promising group of
techniques, but that they have not yet lived up to all their expectations.

In the present paper, we try to remedy this situation. We describe a ver-
sion of the Fast Multipole Method in three dimensions that produces high
accuracy at an acceptable computational cost. As will be seen from the
numerical examples in Section 9, the new scheme has a break-even point of
n ~ 2000 when compared with direct calculation in single precision; with
10-digit accuracy, the break-even point is n ~ 5000; with 3-digit accuracy,
it is n ~ 500. The approach uses a considerably more involved mathem-
atical (and numerical) apparatus than is customary in the design of fast
multipole-type algorithms. This apparatus is based on a new diagonal form
for translation operators acting on harmonic functions, extending the two-
dimensional version introduced by Hrycak and Rokhlin (1995). The overall
approach bears some resemblance to that used in Fast Multipole Methods
for high-frequency scattering problems, which are based on diagonal forms
of translation operators for the Helmholtz equation (Rokhlin 19906, 1995,
Epton and Dembart 1995).

2. Philosophical preliminaries

We begin with an overview of analysis-based 'fast' numerical algorithms,
concentrating on the evaluation of expressions of the form (1.1). Where
possible, we summarize the current 'state of the art' in the field.

If we define the n x n matrix A by the formula

we can rewrite (1.1) in the form

$ = Aq, (2.2)

with $,g G Mn (the expression (1.2) can be rewritten in a similar fashion).
Obviously, straightforward evaluation of either of the expressions (1.1), (1.2)
requires O(n2) operations (evaluating n potentials at n points), and for large-
scale problems this estimate is prohibitively large. On the other hand, the
evaluation of expressions of the forms (1.1), (1.2) is an integral part of the
numerical solution of many important problems in applied mathematics, and
during the last decade, several 'fast' schemes have been proposed for this
purpose, that is, schemes whose computational cost is less than O(n2). Typ-
ically, such methods require O(n) or O(n log n) operations (Rokhlin 1985,
Anderson 1986, Greengard and Rokhlin 1987, Carrier et al. 1988, Rokhlin
1988, 19906, Brandt and Lubrecht 1990, Brandt 1991, Alpert and Rokhlin
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1991, Beylkin et al. 1991, Coifman and Meyer 1991, Greengard and Strain
1991, Strain 1991, 1992, Epton and Dembart 1995). All of them are based
on the straightforward observation that the potentials are smooth functions
in R3, except when Xi is near Xj, and as a result, large submatrices of A are
well approximated by low-rank matrices. Clearly, applying a matrix of di-
mension nxn but rank J to an arbitrary vector requires only nJ operations
(as opposed to n2); this simple observation leads directly to a variety of
asymptotically 'fast' schemes for the evaluation of (1.1); below, we illustrate
the construction of such schemes with a simple example.

Suppose that, in the expression (1.1), the points x\,X2~ • • • ,xn are equi-
spaced and lie on the interval [—1,1], so that

x \ = - 1 , X2 = - l + h , . . . , x n - i = l - h , x n = l, (2.3)

where h = 2/(n — 1). Given three integers I, m, k such that

1 < I < n,
1 < m < n,

1 < k<n-l,

1 < k <n-m, (2.4)

we will denote by AitTn^ the submatrix of A consisting of such elements Aij
that

I < i < l + k-l,

m < j < m + k-l, (2.5)

and say that A^m^ is separated from the diagonal if

l-{m + k-l) \>k, (2.6)

and

m-(l + k-l)\>k. (2.7)

In other words, we will say that the submatrix Aitm<k of the matrix A is
separated from the diagonal if its distance from the diagonal of A is greater
than or equal to its own size (Figure 1). We will construct a rudimentary
'fast' algorithm for the application of the matrix A to an arbitrary vector
by means of the following lemma; its proof is based on several well-known
facts, all of which can be found in Dahlquist and Bjork (1974).

Lemma 2.1 For any integer p < 1, and any l,m,k satisfying the condi-
tions (2.4), there exists a matrix i?i,m,fc of dimension k x k and rank J, such
that

Pz,m,fc-£WH<p- (2.8)
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Fig. 1. Subdivision of matrix into well separated blocks. The submatrices marked
by an X are not well separated from the diagonal

In other words, any submatrix of A separated from the diagonal is of rank
J, to the precision 1/4*7.

Outline of proof. We start by defining the function / : K2

formula

f(x,y) = TJ jp

ix by the

(2.9)

and observing that / is smooth everywhere in M2, except when x = y. We
will say that the square [a, a + c] x [b, b + c] C M2 is separated from the
diagonal if

\a + c-b\>c, (2.10)

and

b + c — a |> c, (2.11)

and observe that on any such square, the function / can be expanded in a
two-dimensional Chebychev series, that is, represented in the form

f(x,y) = } ^ apqTp [ —
p,q=0 V

Tq [ —
2b

(2.12)

with Tj denoting the jth Chebychev polynomial. Finally, we observe that
for any a, b, c satisfying the conditions (2.10), (2.11), the convergence of the
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expansion (2.12) is given by the formula

2b

p,q=0

In other words, for any square separated from the diagonal, the expansion
(2.12) converges to accuracy e after no more than Iog4(e) terms. Combining
(2.6), (2.7) and (1.1) with (2.12) and (2.13), we observe that, for any i,j
satisfying the inequalities (2.5),

!/,• c + 2b\

p,q=U

with a = (21)/n - 1 , 6 = (2m)/n - 1, c = (2k)/n. The matrix BXmk defined
by

3 „ (2Xi
{

p q = 0 V t- i-

clearly satisfies the desired condition (2.8). •

In order to develop a fast algorithm, we first subdivide the matrix A into
a collection of submatrices, as depicted in Figure 1. Each of the submatrices
in this structure is separated from the diagonal, except the submatrices near
the diagonal whose ranks are small simply because their dimensionality is
small. By virtue of Lemma 2.1, each of the separated submatrices is of rank
J, to the accuracy 4~J. In order to apply A to an arbitrary vector with fixed
but finite accuracy (which is always the case in numerical computations),
we can apply each of the submatrices to the appropriate part of the vector
for a cost proportional to kJ, where k is the size of the submatrix. Adding
up the costs for all such submatrices, we obtain the operation count of

Jn log n ~ log | - j n log n, (2-16)

instead of n2.
The scheme outlined above is extremely simple, but representative of the

current approach to the design of 'fast' summation algorithms. Several com-
ments are in order.

1. It is easy to see that the matrix A defined in (2.1) with the spacing
defined by (2.3) is in fact a Toeplitz matrix that can be applied to an
arbitrary vector for a cost proportional to n log n via the Fast Fourier
Transform. This situation occurs sometimes, both in one and higher
dimensions. However, the Toeplitz nature of the matrix A is lost when
the points are not distributed on a uniform grid, and direct application
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of the FFT becomes impossible. For 'somewhat uniformly' distributed
points Xi, various types of local corrections have been successfully util-
ized. When the points are not distributed uniformly (for example, on
a curve or surface), FFT-based methods become ineffective.

2. As described, the scheme is only applicable to one-dimensional prob-
lems, and under very limited conditions. In most situations, the subdi-
vision of the matrix has to be modified, taking into account the geomet-
ric distribution of points in order to locate submatrices whose 'numer-
ical rank' is low. Examples of such subdivisions can be found in Carrier
et al. (1988), Van Dommelen and Rundensteiner (1989), Beylkin et al.
(1991) and Nabors et al. (1994).

3. The scheme is extremely simple and general. It is entirely unrelated
to the detailed nature of the matrix A, needing only some inequality
like (2.13). In other words, so long as the entries of the matrix A are
smooth functions of their indices away from the diagonal, a scheme of
the type outlined above will work. In fact, even that is not necessary;
the elements of the matrix have only to be sufficiently smooth functions
of their indices on a sufficiently large part of the matrix.

4. The scheme admits a large number of modifications; the most obvious
ones replace the Chebychev expansion in (2.12) with other approxim-
ations; one should be careful in doing so, since under many conditions
the Chebychev approximation is optimal (among polynomial approx-
imations), or nearly so. Some of the special-purpose approximation
schemes that have been used successfully employ wavelets and related
bases (Beylkin et al. 1991, Alpert et al. 1993).

Another obvious modification is a change in the choice of submatrices of
low rank; the use of rectangular submatrices (as opposed to the square
ones in Figure 1) permits coarser subdivisions and tends to result in
more efficient algorithms.

5. Algorithms of the type described above usually do not work for prob-
lems where the matrix A is a discretization of an integral operator with
an oscillatory kernel, since such discretizations (normally) have a more
or less constant number of nodes per wavelength of the dominant os-
cillation. As a result, the rank of each submatrix is proportional to its
size, and the resulting algorithms have CPU time estimates of the or-
der O(n2). Sometimes, the calculation can be accelerated by reducing
the size of the constant (Wagner and Chew 1994), but the asymptotic
complexity in such cases is the same as for the direct approach. For cer-
tain classes of oscillatory problems (such as Helmholtz and Schrodinger
equations at high frequency), there exist asymptotically 'fast' schemes
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based on a different (and considerably more involved) analytical ap-
paratus; see, for example, Rokhlin (1988, 19906, 1993), Canning (1989,
1992, 1993), Coifman and Meyer (1991), Bradie, Coifman and Gross-
mann (1993), Coifman, Rokhlin and Wandzura (1993, 1994), Wagner
and Chew (1994), Epton and Dembart (1995). As noted in the intro-
duction, these schemes are related to the scheme we will present below.
They are, however, outside the scope of this paper.

3. Mathematical preliminaries I

In this section, we briefly derive the multipole expansion of a charge dis-
tribution and refer the reader to Kellogg (1953), Jackson (1975), Wallace
(1984), and Greengard (1988) for more detailed discussions.

If a point charge of strength q is located at PQ = (xo,yo,zo), then the
potential and electrostatic field due to this charge at a distinct point P =
(x, y, z) are given by

* ( 3 1 }

and
'X — XQ y -yo z - z0

respectively, where R denotes the distance between points Po and P.
We would like to derive a series expansion for the potential at P in terms

of its distance from the origin r. For this, let the spherical coordinates of P
be (r, 9, 4>) and of PQ be (p, a, (3). Letting 7 be the angle between the vectors
P and Po, we have from the cosine rule

R2 = r
2 + p2 - 2rp cos 7, (3.3)

with

cos 7 = cos 9 cos a + sin 9 sin a cos(</> — /?). (3.4)

Thus,

- = 1 = 1 , (3.5)
R r y i _ 2 £ C o s 7 + ^ rVl - 2u/x + /i2 '

having set

fi = - and u = cos7. (3-6)
r

For // < 1, we may expand the inverse square root in powers of /i, resulting
in a series of the form
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where

Po(u) = l, Pi(u) = u, p2(u) = l ( u 2 - \ ) > ••• (3-8)

and, in general, Pn(u) is the Legendre polynomial of degree n. Our expres-
sion for the field now takes the form

R = E ^ n ( t l ) . (3-9)
71=0

The angular parameter u, however, depends on both the source and the
target locations. A more general representation will require the introduction
of spherical harmonics, which are solutions of the Laplace equation obtained
by separation of variables in spherical coordinates. Any harmonic function
<J> can be expanded in the form

E Crn + ^ r OM). (3-10)
n=0m=—n ^ '

The terms Y™(9, <p)rn are referred to as spherical harmonics of degree n
or solid harmonics, the terms Y™(6, (f))/rn+1 are called spherical harmonics
of degree — n — 1 or multipoles, and the coefficients L™ and M™ are known
as the moments of the expansion.

The spherical harmonics can be expressed in terms of partial derivatives
of l/r (Wallace 1984) as

For m > 0, we have

Y™(6,<l>) - ™ / d . + , _ , ,
<dz

and

x dy,

where

A? = >/(n_(~)
1,)

(^ + m),- (3-14)

They also satisfy the relation

: * 1^' p l m l /'pot; R\f>^Tn<^ C\ 1 ̂ "i
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where we have omitted the normalization factor of \J{2n + l)/47r, to match
the definitions (3.11)—(3.13) given above. The special functions P™ are
called associated Legendre functions and can be denned by Rodrigues' for-
mula

Theorem 3.1 (Addition theorem for Legendre polynomials) Let
P and Q be points with spherical coordinates (r, 6, <j>) and (p, a, (3), respect-
ively, and let 7 be the angle subtended between them. Then

m=—n

Pn(cos7) =

Combining Theorem 3.1 and equation (3.9), we have

(3.16)

(3-17)
n=0 m=—n

It is now straightforward to expand the field due to a collection of sources
in terms of multipoles.

Theorem 3.2 (Multipole expansion) Suppose that k charges of
strengths {qi, i = 1,. . . , k} are located at the points {Qi — (pi, ai, Pi), i =
1,. . . , k}, with \pi\ < a. Then for any P = (r, 0, 0) € K3 with r > a, the
potential $(P) is given by

00 n Mm

E E ^CW),
n=0m=—n

where

Furthermore, for any p > 1,

p n

• > >

n=0m=—n

where

r — a \r

a\ p+1

(3.18)

(3.19)

(3.20)

(3.21)
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Proof. The formula (3.19) follows from equation (3.17) and superposition.
The error bound is obtained from the triangle inequality and the fact that
the ratios pi/r are bounded from above by a/r. •

Suppose now that r = 2a in the context of the preceding theorem. Then
the error bound (3.20) becomes

Mm A /l\p+1

—-rrYJ, (y! <?v — — I ~~ I ) (6.22)
rn + 1 a \2J

n=0m=-n V '
and setting p = Iog2(l/e) yields a precision e relative to the ratio A/a.

4. An N log N algorithm

Theorem 3.2 is all that is required to construct a simple fast algorithm of
arbitrary precision. To reduce the number of issues addressed, we assume
that the particles are fairly homogeneously distributed in a square so that
adaptive refinement is not required.

In order to make systematic use of multipole expansions, we introduce a
hierarchy of boxes which refine the computational domain into smaller and
smaller regions. At refinement level 0, we have the entire computational
domain. Refinement level / + 1 is obtained recursively from level I by subdi-
vision of each box into eight equal parts. This yields a natural tree structure,
where the eight boxes at level I + 1 obtained by subdivision of a box at level
I are considered its children.

Definition 4.1 Two boxes are said to be near neighbours if they are at the
same refinement level and share a boundary point (a box is a near neighbour
of itself).

Definition 4.2 Two boxes are said to be well separated if they are at the
same refinement level and are not near neighbours.

Definition 4.3 With each box i we associate an interaction list, consisting
of the children of the near neighbours of i's parent which are well separated
from box i (Figure 4).

Definition 4.4 With each box i at level / we associate a multipole expan-
sion $;J about the box centre, which describes the far field induced by the
particles contained inside the box.

The basic idea is to consider clusters of particles at successive levels of
spatial refinement, and to compute interactions between distant clusters by
means of multipole expansions when possible. It is clear that at levels 0
and 1, there are no pairs of boxes that are well separated. At level 2, on
the other hand, sixty-four boxes have been created and there is a number
of well separated pairs. Multipole expansions can then be used to compute
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X

Fig. 2. The first step of the algorithm, depicted in two space dimensions for
clarity. Interactions between particles in box X and its near neighbours (grey) are

not computed. Interactions between well separated boxes are computed via
multipole expansions

interactions between these well separated pairs (Figure 2) with rigorous
bounds on the error. In fact, it is easy to see that the bound (3.20) applies
with the ratio a/r < l / \ / 3 . Thus, to achieve a given precision e, we need to
use p = log /^(l/e) terms.

It remains to compute the interactions between particles contained in
each box with those contained in the box's near neighbours, and this is
done recursively. We first refine each level 2 box to create level 3. For a
given level 3 box, we then seek to determine which other level 3 boxes can
be interacted with by means of multipole expansions. Since those boxes
outside the region of the parent's nearest neighbours are already accounted
for (at level 2), they can be ignored. Since interactions with near neighbours
cannot be accounted for accurately by means of an expansion, they can also
be ignored for the moment. The remaining boxes correspond exactly to the
interaction list denned above (Figure 3).

The nature of the recursion is now clear. At every level, the multipole
expansion is formed for each box due to the particles it contains. The
resulting expansion is then evaluated for each particle in the region covered
by its interaction list (Figure 4).

We halt the recursive process after roughly log8 N levels of refinement.
The amount of work done at each level is of the order O(N). To see this, note
first that approximately N p2 operations are needed to create all expansions,
since each particle contributes to p2 expansion coefficients. Secondly, from
the point of view of a single particle, there are at most 189 boxes (the
maximum size of the interaction list) whose expansions are computed, so
that 189 Np2 operations are needed for all evaluations.
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Fig. 3. The second step of the algorithm, depicted in two space dimensions. After
refinement, note that the particles in the box marked X have already interacted

with the most distant particles (light grey). They are now well separated from the
particles in the white boxes, so that these interactions can be computed via
multipole expansions. The near neighbour interactions (dark grey) are not

computed

Fig. 4. Subsequent steps of the algorithm. The interaction list for box X is
indicated in white. In three dimensions, it contains up to 189 boxes
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Fig. 5. At the finest level, interactions with near neighbours are computed
directly. In three dimensions, there are up to 27 near neighbours

At the finest level, we have created roughly 8logsiV = N boxes and it
remains only to compute interactions between nearest neighbours. By the
assumption of homogeneity, there are 0(1) particles per box, so that this
last step requires about 27 iV operations (Figure 5). The total cost is ap-
proximately

189iVp2 log8 N + 27N. (4.1)

The algorithm just described is, in essence, a nonadaptive version of the
one proposed by Barnes and Hut (1986), except that it achieves arbit-
rary precision through the use of high order expansions. Two-dimensional
schemes of this type are due to Van Dommelen and Rundensteiner (1989)
and Odlyzko and Schonhage (1988). Unfortunately, while such schemes have
good asymptotic work estimates, the three-dimensional versions provide only
modest speedups at high precision for the values of N encountered in present
day applications. At N = 100,000, for example, seven digits of accuracy re-
quire p « 20, and the N log N scheme is only two to three times faster than
the direct O(N2) method. In order to accelerate the calculation significantly,
we need some further analytic machinery.

5. Mathematical preliminaries II

The FMM relies on three translation operators, acting on either multipole
(far field) or solid harmonic (local) expansions. They are described in the
next three theorems (Greengard and Rokhlin 1988a, Greengard 1988).

Theorem 5.1 (Translation of a multipole expansion) Suppose that
I charges of strengths qi,q2,---,qi are located inside the sphere D of radius
a with centre at Q = (p,a,(3), and that for points P = (r,0,<f)) outside D,



NEW FMM IN THREE DIMENSIONS 243

the potential due to these charges is given by the multipole expansion

°° n ryn

n=0 m=—n

where P — Q = (r', 8'',(/>'). Then for any point P = (r,9,(f)) outside the
sphere D\ of radius (a + p),

where

oo j j ^

E E ^ (5.2)
j=ok=-j

j n f)k-m-\k\-\m\-\k-m\ Am Ak-m n*y-m(n a\

= J2 E ^ ^ AI ' (5-3)
n=0 m=-n

with A™ denned by equation (3.14). Furthermore, for any p > 1,

D+l

. „ , . .- *r — (a + p)
(5.4)

Definition 5.1 The linear operator mapping old multipole coefficients
{Oj : 0 < n < p, —n < m < n}, to new multipole coefficients {M^ :
0 < n < p, —n < m < n} according to equation (5.3) will be denoted by

Theorem 5.2 (Conversion of a multipole expansion into a local
expansion) Suppose that / charges of strengths qi,q2, • • • ,Qi are located
inside the sphere DQ of radius a with centre at Q = (p,a,(3), and that
p > ( c+ l)a with c > 1. Then the corresponding multipole expansion (5.1)
converges inside the sphere Do of radius a centred at the origin. Inside
-Do, the potential due to the charges gi,<72> • • • >9* is described by a local
expansion:

oo j

j=0k=-j

where
n f)mAk-m\-\k\-\m\ Am Ak-ym—ki o\

n=0 m=—n

with As
r defined by equation (3.14). Furthermore, for any p > 1,

p

E tfY3
k(o,. „ . . v ca — a

j=Ok=-j

(5.7)



244 L. GREENGARD AND V. ROKHLIN

Def in i t ion 5.2 The linear operator mapping truncated multipole expan-
sion coefficients {Oj : 0 < j < p, —j<k<j}to local coefficients
{Lj : 0 < j < p, —j<k< j} according to equation (5.6) will be de-
noted by T

Theorem 5.3 (Translation of a local expansion) Let Q = (p,a,f3)
be the origin of a local expansion

n

E O™Y™(0',4>Vn, (5-8)
n=0m=—n

r' 9' <jj)where P = (r, 8, <f>) and P - Q = (r', 0', 0')- Then

J=Ofc=-j

where

p n Qmj\

n=j m=—n

with As
r defined by equation (3.14).

Definition 5.3 The linear operator mapping old local expansion coeffi-
cients {O™ : 0 < n < p, —n < m < n} to new local expansion coefficients
{L™ : 0 < n < p, —n < m < n) according to equation (5.10) will be denoted
by TLL.
{
by TLL

6. The original FMM

We can now construct a scheme with cost proportional to N, by using The-
orem 5.2 to convert the far field expansion of a source box into a local
expansion inside a target box, rather than by direct evaluation of the far
field expansion at individual target positions.

Definition 6.1 With each box i at level I we associate a local expansion
^iti about the box centre, which describes the potential field induced by all
particles outside box Vs near neighbours.

Definition 6.2 With each box i at level I we associate a local expansion
^f^i about the box centre, which describes the potential field induced by all
particles outside the near neighbours of z's parent.
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A L G O R I T H M 1
The parent of a box j will be denoted by p(j). The list of children of a box
j will be denoted by c(j). The interaction list of a box j will be denoted by
ilist(j).

Upward pass
Initialization
Choose the number of refinement levels n « log8 JV, and the order of the
multipole expansion desired p. The number of boxes at the finest level is
then 8", and the average number of particles per box is s = N/(8n).

Step 1
Form multipole expansions $Hij of potential field due to particles in each
box about the box centre at the finest mesh level, via Theorem 3.2.

Step 2
For levels I = n — 1,... ,2,

Form multipole expansion $; j about the centre of each box at level I
by merging expansions from its eight children via Theorem 5.1.

Downward pass
Initialization
Set * i , i = tf ii2 = • • • = * 1 > 8 - ( 0 , 0 , . . . , 0).

Step 3
For levels I = 2 , . . . , n,

Form the expansion ^>ij for each box j at level I, by using Theorem
5.3 to shift the local \& expansion of j ' s parent to j itself.

Form ^>ij by using Theorem 5.2 to convert the multipole expansion
$itk of each box k in the interaction list of box j to a local expansion
about the centre of box j , adding these local expansions together,
and adding the result to ^ij.

Step 4
For each particle in each box j at the finest level n,

evaluate \&nj at the particle position.

Step 5
For each particle in each box j at the finest level n,

compute interactions with particles in near neighbour boxes directly.
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Since s is the average number of particles per box at the finest level, there are
approximately N/s boxes in the tree hierarchy. Therefore, Step 1 requires
approximately Np2 work, Step 2 requires (N/s)p4 work, Step 3 requires
189(N/s)p4 work, Step 4 requires N p2 work, and Step 5 requires 27TV s
work. Thus, a reasonable estimate for the total operation count is

191 (—~\ pA + 2Np2 + 27Ns. (6.1)

With s = 2p2, the operation count becomes approximately

150/Vp2. (6.2)

This would appear to beat the estimate (4.1) for any N, but there is a
subtle catch. The number of terms p needed for a fixed precision in the
N log N scheme is smaller than the number of terms needed in the FMM
described above. To see why, consider two interacting cubes A and B of unit
volume, with sources in A and targets in B. The worst-case multipole error
decays like (\/3/3)p, since \/3/2 is the radius of the smallest sphere enclosing
cube A and 3/2 is the shortest distance to a target in B. The conversion
of a multipole expansion in A to a local expansion in B, however, satisfies
an error bound which depends on the smallest sphere enclosing B as well as
the smallest sphere enclosing A. Prom equation (5.7), the worst case error is
less than (0.76)p, although with more detailed analysis, one can show that
the error is bounded by (0.75)p (Petersen, Smith and Soelvason 1995).

In the original FMM (Greengard and Rokhlin 1988a, Greengard 1988), it
was suggested that one redefine the nearest neighbour list to include 'second
nearest neighbours,' so that boxes which interact via multipole expansions
are separated by at least two intervening boxes of the same size. The error
can then be shown to decay approximately like (0.4)p. However, the number
of near neighbours increases from 27 to 125 and the size of the interaction
list increases from 189 to 875.

It is clear that the major obstacle to achieving reasonable efficiency at high
precision is the cost of the multipole to local translations (189p4 operations
per box). There are several schemes that have been suggested for reducing
the cost of applying translation operators. The simplest is based on rotating
the coordinate system so that the vector connecting the source box B and
the target box C lies along the z-axis, shifting the expansion along the z-axis,
and then rotating back to the original coordinate system.

6.1. The FMM using rotation matrices

We begin with the following obvious result.
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Lemma 6.1 Consider a harmonic function given by
00 n

*C) = £ E
n=0m=—n

where (r, #, </>) are the spherical coordinates of the point P. If we rotate the
coordinate system through an angle j3 in the positive sense about the z-axis,
then

00 n / jTj-m \

*(**) = £ E U»rB + ^ U r W ) ,
n=0m=-n \ /

where (r, 0, <//) are the new coordinates of P ,

Z™ = L™eim/3, and M™ = M™eimf3.

Definition 6.3 Given a rotation angle /?, the diagonal operator mapping
old multipole coefficients to rotated multipole coefficients (O™ —>• 0™ eim@)
will be denoted by Tlz((3).

We also need to be able to rotate the coordinate system about the y-axis.

Lemma 6.2 Consider a harmonic function given by

*(p) = E E
n=0m=-n

where (r, 0, (f)) are the spherical coordinates of the point P. If we rotate the
coordinate system through an angle a in the positive sense about the y-axis,
then there exist coefficients R(n,m,m',a) such that

00 n

n=0m'=-n \

where (r, 9, <//) are the new coordinates of P,

L™'= J2 R(n,m,m',a)L™ (6.3)
m=—n

and

A C ' = E R(n,m,m',a)M™. (6.4)
m=—n

Proof. See Biedenharn and Louck (1981) for a complete discussion and for a
variety of methods that can be used to compute the coefficients R(n, m, m', a).

a
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Lemma 6.3 In order to shift a multipole expansion a distance p along the
z-axis, one can replace equation (5.3) with the simpler formula

_
n=0 A3

In order to convert a multipole expansion centred at the origin into a local
expansion centred at (0,0, p), one can replace equation (5.6) with the simpler
formula

In order to translate the centre of a local expansion from the origin to the
point (0,0, p), one can replace equation (5.10) with the simpler formula

, OAn 1
TK \ 71 71 — J j

3 ~~ Z ^ (_-l\n+jAk ' VU'U
n=j \ X) ^n

Definition 6.4 Given a rotation angle a, the diagonal operator mapping
old multipole coefficients to rotated multipole coefficients according to for-
mula (6.3) or (6.4) will be denoted by 7Zy(a). The special cases of the linear
operators TMM, TML, and TLL which shift a distance p in the ^-direction
according to the formulae (6.5), (6.6), and (6.7) will be denoted by T^^ip),
T^L{p), and T£L(p).

We can now combine Lemmas 6.1, 6.2 and 6.3 to obtain the desired fac-
torizations of TMM, 7ML,

Lemma 6.4
TMM = nz(-P)ny(-a)TMM(p)1ly(a)nz(f3),
TML = nz{

where (p, a, f3) is the desired shifting vector.

Clearly, the cost of applying TMM, TML, or TLL by means of the preceding
factorization is

O(P
2) + O(p3) + O(p3) + O(p3) + O(p2).

Thus, the total computational cost of the FMM can be reduced to approx-
imately

191 (—} 3p3 + 2Np2 + 27Ns.
\ s J

With s = 3p3/2, the operation count becomes

270Np3/2 + 2Np2. (6.8)
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7. Mathematical preliminaries III

Over the last few years, a number of 'fast' or diagonal translation schemes
have been developed that require O(p2) work (Greengard and Rokhlin 19886,
Berman 1995, Elliott and Board 1996). Unfortunately, they are all subject
to certain numerical instabilities. The instabilities can be overcome, but at
additional cost, the details of which we leave to the cited papers.

The latest generation of fast algorithms is based on combining multipole
expansions with exponential or 'plane wave' expansions. The reason for
using exponentials is that translation corresponds to multiplication and,
like the earlier fast schemes, requires only O(p2) work. Unlike in the earlier
diagonal schemes, however, no numerical instabilities are encountered. The
two-dimensional theory is described in Hrycak and Rokhlin (1995), and we
present the three-dimensional theory here.

Remark 7.1 A complicating feature of the new approach is that six plane
wave expansions will be associated with each box, one emanating from each
face of the cube. To fix notation, we will refer to the +z direction as up, to
the — z direction as down; to the +y direction as north, to the — y direction
as south; to the +x direction as east, and to the —x direction as west. The
interaction list for each box will be subdivided into six lists, one associated
with each direction.

Definition 7.1 The Uplist for a box B consists of elements of the inter-
action list that lie above B and are separated by at least one box in the
+z direction (Figure 6). The Downlist for a box B consists of elements of
the interaction list that lie below B and are separated by at least one box
in the — z direction. The Northlist for a box B consists of elements of the
interaction list that lie north of B, are separated by at least one box in the
+y direction, and are not contained in the Up- or Downlists. The Southlist
for a box B consists of elements of the interaction list that lie south of B,
are separated by at least one box in the — y direction, and are not contained
in the Up- or Downlists. The Eastlist for a box B consists of elements of the
interaction list that lie east of B, are separated by at least one box in the +x
direction, and are not contained in the Up-, Down-, North-, or Southlists.
The Westlist for a box B consists of elements of the interaction list that lie
west of B, are separated by at least one box in the — x direction, and are
not contained in the Up-, Down-, North-, or Southlists.

It is easy to verify that the original interaction list is the union of the Up-,
Down-, North-, South-, East- and Westlists. It is also easy to verify that

C G Uplist(B) & B G Downlist(C)
C € Northlist(B) o B <E Southlist(C)

C G Eastlist(B) « B e Westlist(C). (7.1)
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W

Fig. 6. The Uplist for the box B (see Definition 7.1)

Given a source location P = (xo, yo, ZQ) and a target location Q = (x, y, z),
our starting point is the well-known integral representation (Morse and Fesh-
bach 1953, p. 1256)

/( ) {y y)

_ _ / g-A(z-zo) /
2TT JO JO

(z -

- x0)2x0)2 - y0)
2) dA, (7.2)

valid for z > ZQ.
To get a discrete representation, we must use an appropriate quadrature

formula. The inner integral, with respect to a, is easily handled by the
trapezoidal rule (which achieves spectral accuracy for periodic functions),
but the outer integral requires more care. Laguerre quadrature is an ap-
propriate choice here, but even better performance can be obtained using
generalized Gaussian quadrature rules (Yarvin and Rokhlin 1996). These
have been designed with the geometry of the interaction list in mind.

Because of the restriction that z > ZQ, we will assume, for the moment,
that the source P is contained in a box B and that the target Q lies in a
box C G Uplist(B). The following lemma describes several discrete approx-
imations of the double integral in (7.2) as double sums.
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Lemma 7.1 Let P € B and Q £ C G Uplist(i?), where B is a box of unit
volume. Then

1 9 .... M(k)

< 10"15, (7.3)

where aj = 2itj/M(k), and the weights wi,..., wg, nodes Ai,. . . , Ag, and
values M(l) , . . . , M(9) are given in Section 12, Table 5. (The total number
of exponentials required is 109.)

18 wk
 M{k)

—\k[(z—zo)—i(x-xo) cosaj-(y-yo) sin aj] < 1 0 " b , (7.4)

where a^ = 2irj/M(k), and the weights iv\,..., w\%, nodes A i , . . . , Aig, and
values M ( l ) , . . . , M(18) are given in Section 12, Table 6. (The total number
of exponentials required is 558.)

30 M{k)

k

kTl M(*0 £{
(7-5)

where aj = 2irj/M(k), and the weights w\,..., W30, nodes Ai,. . . , A30, and
values M(l) , . . . , M(30) are given in Section 12, Table 7. (The total number
of exponentials required is 1751.)

Remark 7.2 The formulae (7.3)-(7.5) are somewhat complex, but have a
simple interpretation. The outer sums use the generalized Gaussian weights
and nodes {u>fc,Afc} obtained in Yarvin and Rokhlin (1996) to approxim-
ate the outer integral (with respect to A), while the inner sums use the
trapezoidal rule to approximate the inner integral (with respect to a). The
number of nodes in each inner integral depends on the value A& for which the
integration is being performed, and is denoted by M(k). These are derived
from standard estimates concerning Bessel functions (Watson 1944, pp. 227,
255; Rokhlin 1995).

Remark 7.3 In the remainder of this paper, we will assume that the de-
sired precision e is clear from the context, and will write

s(e)M(k)
V^ y ^ _J£k_ Afc(z-zo) i\k((x-x0) cos aj+(y-y0) sin aj

where aj = 2nj/M(k). This is a mild abuse of notation, since the weights,
nodes and values M(k) depend on e as well. The total number of exponential
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basis functions used will be denoted by 5exp, so that

fc=l

Corollary 7.1 Let B b e a box of unit volume centred at the origin con-
taining TV charges of strengths {qi, I = 1,...,N}, located at the points
{Ql = (xi,yi,zi), 1 = 1,... ,N}. Then, for any P contained in Uplist(5),
the potential 3>(P) satisfies

s(e) M(k)

fc=l j=l

where A = J2iL\ \QI\ and

N

1=1

Corollary 7.2 (Diagonal translation) Let B b e a box of unit volume
centred at the origin containing iV charges of strengths {qi : I = 1,..., N},
located at the points {Qi = \xi,yi,zi) : / = 1,. . . , iV} and let C be a box
in Uplist(.B) centred at {x\,y\,z\). For P G C, let the potential $(P) be
approximated by the exponential expansion centred at the origin

s(e) M{k)

$(P) = J2 Yl W{k,j)e-XkZeiX^xcosa^+ysina^ + O(e). (7.9)
fc=i j=i

Then
s(e) M(k)

V(k, j)e-
A'=(2-zi)e

iAfc((a:-^i)cosQ:,+(t/-j/i)sinQ:,) _|_ Q / £ \

j
(7.10)

where
^(fc,j) = W(k, j) e-^iei\k(x1coSaj+ylSmaj) _ ^^

Definition 7.2 The diagonal operator mapping the original set of expo-
nential expansion coefficients {W(k, j)} to the shifted exponential expansion
coefficients {V(k, j)} according to (7.11) will be denoted by ' P ^ , where
BC = (#i, j/i, z\) is the vector from the centre of B to the centre of C.

In the FMM, we will be given the multipole expansion of a charge dis-
tribution for a box B rather than the charge distribution itself, and will
need to convert it to an exponential expansion. This is accomplished by the
following theorem.
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Theorem 7.1 Let B be a box of unit volume centred at the origin con-
taining N charges of strengths {qi, I = 1,...,JV}, located at the points
{Ql = (xi,Vi, zi), I = 1, • • •, N}. Let P € C € Uplist(S) and suppose that
the potential 4>(P) is given as the multipole expansion

$(P) = E E -^kY^{e^)- (7-12)
n=0 m=—n

Then

S(E) M(fc)

fc=l j=\

where A = J2i=i \il

^ y/(n-m)\{n
(7.14)

Proof. The formula (7.14) follows from the definitions (3.11) (3.12) and
(3.13). The estimate (7.13) follows from Corollary 7.1. •

Definition 7.3 The linear operator mapping a finite multipole expansion
{M™ : 0 < n < p, —n < m < n}, to the corresponding set of coefficients
in an exponential expansion {W(k,j)} according to equation (7.14) will be
denoted by CMX-

Once the multipole expansion for a source box has been converted into
an exponential expansion (via Theorem 7.1) and translated to a target box
centre (via Corollary 7.2), we will need to convert the exponential expan-
sion back into a solid harmonic series. The following theorem provides the
necessary machinery.

Theorem 7.2 Let B be a box of unit volume containing N charges of
strengths {<#, I = 1,...,JV}, located at the points {Qi = (xi,yi,zi), I =
1 , . . . , N}. Let P be contained in a box C G Uplist(-B), centred at the origin,
and suppose that the potential $ (P) is given as the exponential expansion

s(e) M(k)

E E W(k,j)e-XkZeiX^xcos^+ysina^\ < Ae, (7.15)
fc=i j=i

where A = J2i=i fa\- Then

E
n=0m=—n

<Ae, (7.16)
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where

(_j\\m\ s(£) M(k)
l l £ ( A ) B £ W(k,j)eima>. (7.17)

Proof. Equation (7.17) follows easily from the formula in Hobson (1955,
p. 123),

(z + ix cos a + iy sin a)n =

rn jpn(cos0) + 2 £ (i)-m
 {n^m)](-irP™(coSe) cosm(0 - a)\ ,

where (r, #, (f>) are the spherical coordinates of the point with Cartesian
coordinates (x,y, z). •

Definition 7.4 The linear operator mapping the set of coefficients in an
exponential expansion {W(k,j)} to the coefficients in the corresponding
truncated solid harmonic expansion {L™ : 0 < n < p, —n<m<n},
according to equation (7.17) will be denoted by CXL-

Remark 7.4 Theorems 7.1 and 7.2, like Theorem 5.2, are not quite the
right tools needed to obtain rigorous error estimates for the FMM. In both
cases, we have ignored the fact that the multipole and local expansions are
truncated. It is straightforward but tedious to derive precise estimates, and
we ignore this issue in the present paper. We should note that the nature of
such estimates depends on how the multipole-to-exponential, multipole-to-
solid harmonic or exponential-to-solid harmonic conversion is carried out.
Formulae (7.14), (7.17) and (5.6) are the easiest to derive, being the Taylor
expansions of the potential $. However, each of these conversions is simply
a linear mapping from one set of basis functions to another. The formulae
(7.17), (7.14), and (5.6) can be shown to correspond to minimizing the L2
error on the surface of a sphere enclosing the given source or target box.
One could choose a variety of other possible projections, such as minimizing
the L2 or Loo error on the surface of the corresponding box itself.

Remark 7.5 By inspection of formula (7.14), it is clear that the cost of
applying the operator TMX is p2 s(e) +pSexp. The same is true for the
operator TXL- It is also worth noting that Fast Fourier Transforms can be
used to reduce the cost of the outer sum in the truncated version of formula
(7.14) and the inner sum in the truncated version of formula (7.17).

Corollary 7.3 (Multipole to local factorization) Let B be a box
of unit volume and C a box in Uplist(-S). If TML is the translation oper-
ator converting the multipole expansion centred in B to the local expansion
centred in C, then

B-C CMX- (7.18)
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Remark 7.6 It is important to note that Lemma 7.1 provides a carefully
designed quadrature formula which assumes that the source box B has unit
volume and that the target is in .B's Uplist. In order to use these quadrature
weights and nodes, we need to rescale the multipole and local expansions so
that the box dimension always has unit volume. To accomplish this, if

*C) = E E ~^hYn^^) (7.i9)
n=0 m=—n

is the multipole expansion for a box B of volume d3, we simply write

£ E (STiV(^)- (7.20)
n=0m=-n Vla>

The local expansion for a target box in .B's interaction list is accumulated
as

3 % ( ) (7-21)
j=Ok=-j V O t /

Corollary 7.4 (Scaled multipole to local factorization) Let B be a
box of volume d3 and C a box in Uplist(B), with the vector from the centre
of B to the centre of C given by {x\,y\,z\). If TML is the translation oper-
ator converting the multipole expansion centred in B to the local expansion
centred in C, then

£ic (7.22)

where

and B~C = BC/d.

The cost of a single multipole-to-local translation using the factorization
of Corollary 7.4 is

2p2 + 2p2s(s) + 2p5exp « 2p3,

since s « p and 5e x p ~ P2 • If each translation were carried out in this man-
ner, we would not improve on the rotation-based scheme discussed in Section
6.1. However, once the multipole expansion for a box B has been converted
to an exponential expansion (via the application of V^M and CMX), it can
be translated to each box in its Uplist at a cost of Sexp ~ p2 operations.
Conversely, once a box B has accumulated all the exponential expansions
transmitted from its Downlist (see equation (7.1)), a single application of
the operators CXL and T>^L yields the local harmonic expansion describing
the field due to the sources in the Downlist of box B (Figure 7).

Up to this point, we have considered only the exponential representation
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Multipole
representation

( M
V
\ ^—

P3

I
\

ni\
Ln 1 * zz

P3 or p4

-x, P L ^
*P j ~*^^^~

Exponential
representation

Local
representation

X- 1 T

— ~ ( v

)

P3

y

Exponential
representation

Fig. 7. In the new FMM, a large number of multipole-to-local translations,
costing O(p3) or O(p4) work, can be replaced by a large number of exponential

translations, costing O(p2) work

needed to shift information in the upward (+z) direction. As noted in the
beginning of this section, however, there are six outgoing directions that
need to be accounted for. The most straightforward way of generating the
appropriate expansions is to rotate the coordinate system so that the z-axis
points in the desired direction. The following lemma provides the necessary
formulae.

Lemma 7.2 Let B be a box of volume d3 and C a 'target' box. Let TML
be the translation operator converting the multipole expansion centred in B
to the local expansion centred in C.
If C € Downlist(S), then

(TT) VdM.

If C e Eastlist(5), then

If C <E Westlist(-B), then

^ML' = ?>d,L Tly(7r

If C € Northlist(-B), then

7MLth = VdtL ny{-ir/2) nz(-ir/2) CXL

If C E Southlist(-B), then

where BC is the appropriately scaled vector from the centre of B to the
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centre of C in the rotated coordinate system. The operators 1ZZ and TZy are
defined in Section 6.1.

Definition 7.5 Let T^P
L be given by the operator TML defined in equation

(7.22). Then, for Dir e {Up, Down, East, West, North, South}, we will write

7-Dir /^>Dir T1 TjDir
ML = y U~BC F '

so that

QUp = ^ d i L C X L ,

P U p = CMXVdM,

gDown = Vd,LHy{-T:)CxL,

etc.

We are now in a position to describe the new FMM in detail.

8. The new FMM

ALGORITHM 2
The parent of a box j will be denoted by p(j). The list of children of a
box j will be denoted by c(j). For each box j , the 'outgoing' exponential
expansion with coefficients {W(n,m) : 1 < n < s(e), 1 < m < M(n)},
will be denoted by Wj. We will also associate an 'incoming' exponential
expansion with each box, denoted by Vj.

Upward pass
Initialization
Choose the number of refinement levels n « log8 N, and the order of the
multipole expansion desired p. The number of boxes at the finest level is
then 8n, and the average number of particles per box is s = N/(8n).

Step 1
Form multipole expansions <!>„,, of potential field due to particles in each
box about the box centre at the finest mesh level, via Theorem 3.2.

Step 2
Do for levels I = n — 1,... ,2,

Form multipole expansion $ ; j about the centre of each box at level I
by merging expansions from its eight children via Theorem 5.1.

(In applying TMM, use the factorization of Lemma 6.4.)
End do
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Downward pass
Initialization
Set * i , ! = # i j 2 = • • • = *1 ) 8 = (0 ,0 , . . . , 0).

Step 3A
Do for levels I = 2,... ,n,

Form the expansion ^>ij for each box j at level / by using
Theorem 5.3 to shift the local * expansion of j ' s parent to j itself.

(In applying TLL, use the factorization of Lemma 6.4.) Set \I//.j = ^i.j.

Step SB
For each direction Dir = Up, Down, North, South, East, West, the opposite
direction will be denoted by —Dir, so that —Up = Down, —Down = Up,
etc. Thus, if a box B sends an outgoing expansion in direction Dir to Box
C on its Dir list, then C can be viewed as receiving the expansion from B
which is an element of its —Dirlist (see equation (7.1)).

Do for Dir = Up, Down, North, South, East, West,
For each box j at level /, convert the multipole expansion <J>jj
into the 'outgoing' exponential expansion for direction Dir.

Wj = VDir^id.

For each box j at level I, collect the 'outgoing' exponential
expansions from the —Dirlist of box j as an 'incoming'
exponential expansion

where kj is the appropriately scaled vector from the centre of
box k to the centre of box j in the rotated coordinate system.

For each box j at level I, convert the accumulated 'incoming'
exponential expansion Vj into a local harmonic expansion and
add result to ^ij.

* i j = * u + QDirVj.
End do

End do

Step 4
For each particle in each box j at the finest level n,

evaluate ^n,j at the particle position.

Step 5
For each particle in each box j at the finest level n,

compute interactions with particles in near neighbour boxes directly.
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Since we are using the rotation scheme for applying TMM and Tn in Steps 2
and 3A, these now require a total of 3p3 (N/s) work, where s is the number
of particles per box on the finest level. In Step 3B, the applications of
the multipole to exponential operators 7?Dir and the exponential-to-local-
operators QDir require a total of approximately 6p3(N/s) work, while the
exponential translations require approximately 189 p2 {N/s) work. The total
operation count is therefore of the order

189 — p2 + 2 Np2 + 27TV s + 6— p3.
s s

With s = 2p, the total operation count is about

8.1. Current improvements

There are several ways in which the algorithm described above has been
accelerated. Symmetry considerations, for example, allow the pairs of oper-
ators {pUp-pDown^ {-pNorth^South^ & n d {-pEast -pWest} t Q b e a p p l i e d s i m .

ultaneously. The same is true for the adjoint pairs {<2Up, <2Down}, etc. Thus,
the 6p3(N/s) work needed in Step 3B can be replaced by Sp3(N/s) work.

Even more significant is the fact that the number of translations per box
can be reduced from 189 to less than 40. To see why, suppose that a box B
at level I has eight children, denoted B\,..., B$, and that boxes C\,..., Cj
lie in the Uplist of each child. In the new FMM described above, we accu-
mulated an 'incoming' exponential expansion in each box Cj as

where W^ is the 'outgoing' exponential expansion for B^. Repeating this for
j = 1, . . . , J requires a total of 8 J translations. Since all translations are
diagonal, however, it is easy to verify that

fc=i

fc=l

Thus, by first merging the 'outgoing' expansions, and then translating their
sum to each target box Cj, only 8 + J translations are needed. It should
be emphasized that this improvement relies on the diagonal form of the
operators. One could try to merge expansions in this manner in the context
of the original FMM, but the local expansion coefficients computed with and
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without merging would not be the same. There would be a significant loss
of precision, consistent with the error bound (5.7).

8.2. Further improvements

There are several ways in which the scheme can be accelerated that have not
been incorporated into the existing code. The most significant of these is
probably a change in the choice of the translation operators TMM and TLL,
as well as the multipole-to-exponential and exponential-to-local conversion
operators CMX and CXL- AS mentioned previously, the obvious formulae
(5.3), (5.10), (7.14), and (7.17) are obtained via Taylor expansion and are
clearly not optimal. Preliminary numerical experiments indicate that repla-
cing them with more carefully optimized tools will reduce the cost of these
calculations within the FMM by a factor of three. Furthermore, the im-
provement described in Remark 7.5 has not yet been implemented; we are
using the explicit matrix form of the discrete Fourier transform in applying
CMX and CXL, rather than the FFT.

The incorporation of all these modifications is likely to reduce the overall
cost by a factor of two.

9. Numerical results

The new FMM has been implemented in Fortran 77 and tested on uniform
random distributions. The results of our experiments are summarized in
Tables 1-4, with all times calculated in seconds using a Sun Ultra-1/140
workstation. In each table, the first column lists the number of particles,
the second column lists the number of levels used in the multipole hierarchy,
the third column lists the order of the multipole expansion used, and the
fourth column lists the corresponding number of exponential basis functions.
Columns five and six indicate the times required by the FMM and the direct
calculation, respectively, and column seven lists the I2 norm of the error in
the FMM approximation

v E£ii*o*)ia ;
For the largest simulations, with iV > 10000, we have carried out the direct
calculation on a subset of only 100 particles. The stated times, indicated in
parentheses, are then computed by extrapolation and the errors are obtained
by restricting the formula (9.1) to this subset.
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Table 1. Timing results for the FMM using fifth-order expansions and
twenty-eight exponential basis functions

N

500
5000

40000
300000

Levels

3
4
5
6

P

5
5
5
5

^exp

28
28
28
28

TFMM

0.18
1.9
20
175

Tdir

0.20
20.1

(1461)
(82475)

Error

4.5 x 10"3

7.6 x 10-3

7.0 x 10"3

1.3 x 10"2

Table 2. Timing results for the FMM using ninth-order expansions and 109
exponential basis functions

N

2000
10000
80000

Levels

3
4
5

P

9
9
9

"-•exp

109
109
109

TFMM

1.4
7.9
111

Tdir

3.37
83

(5838)

1
3
4

Error

Ax
.6x
. 1 X

10"4

io-4

10"4

Table 3. Timing results for the FMM using eighteenth-order expansions
and 558 exponential basis functions

Tdir Error

13.4 1.1 x 10"7

(567) 1.5 x 10"7

(20100) 1.9 x 10-7

N

4000
25000

150000

Levels

3
4
5

P

18
18
18

'-'exp

558
558
558

J-FM

8.3
68

495

Table 4. Timing results for the FMM using thirtieth-order expansions and
1751 exponential basis functions

N I Levels p 5 e x p TFMM Tdir Error

5000
50000

30 1751
30 1751

22
316

20.8 6.2 x 10"12

(2280) 6.2 x 10"12
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10. Extensions and generalizations

The scheme presented in this paper is not adaptive and assumes that the
distribution of points is reasonably uniform in space. In order to handle
more general distributions, one needs to allow some regions to be subdivided
into finer refinement levels than others. Adaptive structures of this type
have been designed by several groups (Carrier et al. 1988, Van Dommelen
and Rundensteiner 1989, Nabors et al. 1994) and we are in the process of
incorporating these structures into the new FMM.

While a number of techniques now exist for high-frequency scattering
problems (Rokhlin 1988, 1990, 1993, Canning 1989, 1992, 1993, Coifman
and Meyer 1991, Bradie et al. 1993, Coifman et al. 1993, 1994, Wagner
and Chew 1994, Epton and Dembart 1995), an important generalization of
the algorithm of this paper is to the calculation of potentials governed by
the Helmholtz equation at low frequency. By this we mean an environment
in which the region of interest is no more than a few wavelengths in size,
but contains a large number of discretization points (for example, due to the
complexity of some structure being modelled). Algorithms for such problems
are currently being designed.

11. Conclusions

A new version of the FMM has been developed. It is based on a new diag-
onal form for translation operators, and is significantly faster than previous
implementations at any desired level of precision. Of particular interest is
the fact that high precision calculations have been brought within practical
reach.
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12. Tables: quadrature weights and nodes

263

Table 5. Columns 1 and 2 contain the nine weights and nodes needed for
discretization of the outer integral in (7.2) at three-digit accuracy. Column
3 contains the number of discretization points needed in the inner integral,
which we denote by M(k)

Node

0.09927399673971
0.47725674637049
1.05533661382183
1.76759343354008
2.57342629351471
3.44824339201583
4.37680983554726
5.34895757205460
6.35765785313375

Weight

0.24776441819008
0.49188566500464
0.65378749137677
0.76433038408784
0.84376180565628
0.90445883985098
0.95378613136833
0.99670261613218
1.10429422730252

M{k)

4
7
11
15
20
20
24
7
1
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Table 6. Columns 1 and 2 contain the eighteen weights and nodes for
discretization of the outer integral in (7.2) at six-digit accuracy. Column 3
contains the number of discretization points needed in the inner integral,
which we denote by M(k)

Node Weight

0.05278852766117
0.26949859838931
0.63220353174689
1.11307564277608
1.68939496140213
2.34376200469530
3.06269982907806
3.83562941265296
4.65424734321562
5.51209386593581
6.40421268377278
7.32688001906175
8.27740099258238
9.25397180602489
10.25560272374640
11.28208829787774
12.33406790967692
13.41492024017240

M(k)

0.13438265914335 5
0.29457752727395 8
0.42607819361148 12
0.53189220776549 16
0.61787306245538 20
0.68863156078905 25
0.74749099381426 29
0.79699192718599 34
0.83917454386997 38
0.87570092283745 43
0.90792943590067 47
0.93698393742461 51
0.96382546688788 56
0.98932985769673 59
1.01438284597917 59
1.04003654374165 51
1.06815489269567 4
1.10907580975537 1
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Table 7. Columns 1 and 2 contain the thirty weights and nodes for
discretization of the outer integral in (7.2) at ten-digit accuracy. Column 3
contains the number of discretization points needed in the inner integral,
which we denote by M{k)

Node Weight

0.03239542384523
0.16861844033714
0.40611377169029
0.73466473057596
1.14340561998398
1.62232408412252
2.16276138867422
2.75739199003682
3.40002470112078
4.08539104793552
4.80897515497095
5.56688915983444
6.35578243654166
7.17277232990713
8.01538803542112
8.88152313049502
9.76939480982937
10.67750922034750
11.60463289992789
12.54977061299652
13.51215012257297
14.49121482655196
15.48662587630224
16.49827659770404
17.52632405530625
18.57124579700721
19.63393428118300
20.71585163675095
21.81939113866225
22.95080495008893

M{k)

0.08289159611006 7
0.18838810673274 10
0.28485143005306 14
0.37041553715895 18
0.44539043894975 22
0.51100452150290 26
0.56865283856139 30
0.61958013174010 35
0.66481004321965 39
0.70517204769960 43
0.74134967169016 48
0.77392103530415 53
0.80338600122756 57
0.83018277269650 62
0.85469824839953 66
0.87727539085565 71
0.89821948245755 76
0.91780416582368 80
0.93627766216629 85
0.95386940504388 89
0.97079739700556 94
0.98727684670885 97
1.00353112433459 103
1.01980697905712 107
1.03639774457222 110
1.05368191266322 112
1.07219343903929 108
1.09278318162014 84
1.11737373706779 4
1.15786184931141 1
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